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TECHNICAL TRANSLATION F-2

ON THE TEMPERATURE DISTRIBUTION BEHIND CYLINDERS IN A FLOW*

By Jakob Ackeret

If a body which is assumed to be heat-insulated is in the flow of a

gas flowing uniformly parallel for a relatively large distance, differ-

ences in temperature result along the surface and in the wake. For an

ideal gas flow (without separation) the steady state becomes (fig. i):

c2 U 2

¢ = CpT i + -_ = Constant = c T + --p_ 2
(i)

Thus,

T i - Too -
U2 _ c2

2Cp

At the stagnation points SI and S2 where c = 0,

U2

TO = T + 2c--7

would be the stagnation or tank temperature.

Therefore

c2
Ti = TO (2)

2Cp

Actually_ however, boundary layers exist which can still separate in the

case of blunt forms. The theory of compressible boundary layers yields

for the attached flow, thus for very slender profiles, values of wall

temperature Tw which are higher than T i. Thus a temperature recovery

is present which, therefore, is largely incomplete.

*"Uber die Temperaturverteilung hinter angestr_mten Zylindern."

Mitt. No. 21, Inst. fiir Aerod., Tech. Nochschule, (Zifrich), 1954, pp. 5-21.

Presented at the Fall Meeting of the Swiss Physical Society at Bern on

August 24, 1952. (See ZAMP, vol. 3, issue 6, 1952, p. 472.)
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For laminar boundary layers on plane plates,

•
a = _ is the so-called Prandtl nturber. (_ = viscosity,where

Cp = specific heat for constant pressure, 7' = heat conductivity).

Since for air a _ 0.70, there follows with 13 = _ = 0.83

(5)

2! \

•w : Ti+ o.83_ITo - Ti),: -o.17c___
2Cp

(3a)

It seems that this relationship applies rather satisfactorily also in

those cases where a pressure drop in the flow direction exists (see
below).

In the case of turbulent boundary layers, the recovery is larger.

According to the concept of turbulent exchange, a = 1 would be expected,

thus complete recovery. Actually, however, there exists also a laminar

sublayer which reduces the effective recovery. In practice, the fol-

lowing condition is found approximately

c2
Tw = Ti + 0.90(T 0 - Ti) = TO - 0.i0

2c--7
(4)

Therefore, almost complete recovery is obtained in all cases; only at

points of high excess velocity is a noticeable difference (TO - Tw]
/

present.

In the case of blunt forms with flow separation, a new phenomenon

appears: particularly low temperatures are measured on the back side

(i, 2). This is remarkable because the flow velocities there certainly

are small, so that, according to the steady energy equation (i), stagna-

tion temperature should almost be reached.

Ryan I has shown that this "aerodynamic cooling" appears for very

different cylinder forms and that profiles exist which not only do not

yield any temperature recovery but rather a :ooling below the free-stream

iRyan, Lloyd F.: Experiments on Aerodynamic Cooling. Mitt. No. 18,

Inst. fur Aerod., Tech. Hochschule (ZGrlch), c. 1951. The figures of that

paper, referred to herein with the prefix Ry, have not been included in

this paper.
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temperature T . Figures Ry 21 and Ry 12, Ry 16, Ry 17, and Ry 18 show

for circular cylinders, half bodies, and various other shapes, the tem-

peratures at the rear point of the profile. The profile named as the

first in figures Ry 12, Ry 16, Ry 17, and Ry 18 yields, for instance,

at the Mach number _ = 0.6, a recovery factor of -0.65. It would
a

evidently be interesting to attempt an explanation of this temperature

deficit.

A first qualitative hint is offered by certain observations that

Ryan made. He found that the cooling effect is particularly large when

the noise caused by the vortices being shed at high speeds (probably due

to resonance phenomena) appears amplified. Figure Ry 13 shows a schlle-

ren photograph of the vortices behind a circular cylinder for a state of

amplified noise; figure Ry 19 shows the vortex formation behind the two-

dimensional half body. Here it is remarkable that the sound waves which

occur during formation and separation of the vortices can be seen - an

indication, by the way, that the separation is dynamically a very effec-

tive process. Figure 2 of this paper (according to a flow photograph in

water) shows that a rather regular flow exists near the cylinder.

Another of Ryan's important observations concerns the fact that a

strong cooling occurs also in the case of a wing profile when separation

sets in and strong individual vortices are forming. It could be assumed

that it is not so much the irregular turbulence which causes the cooling

but nonsteady well-defined flows during the separation and the flowing

off of the vortices. In this case, it could be assumed, furthermore,

that even the potential flow of the field of individual vortices being

shed may yield cooling.

For a nonsteady potential flow there applies the simple theorem 2

c2
that the total energy c = cpT + -2- has the following relationship to

the velocity potential:

+ _ = Constant in the field
(7)

If the state (outside of the wake) at a large distance is considered,

it is found to be practically steady, and

U 2
c : CpT_ + -_- (6)

is valid. For an arbitrary point, then

_yan, I.C., p. 5. A simple derivation may be found in appendix i,

p. 8.



Ae = e - e :--- (7)
3t

Only the time average is measured. It results from the calculation as

- i _tl 8_
tl (8)

so that only the initial and final potential values need be calculated.

This is very convenient inasmuch as the motion of the vortex centers
need not be known in all details.

The simple calculation for the circular cylinder is now to be per-

formed. According to the observations, alternating individual vortices

with the circulations ±F are formed, n pairs (+ -) per unit time.

The flow about the cylinder then is to be composed of a cylinder flow

without circulation and of a nonsteady vortex plus reflected vortex

field which may be superposed. If a vortex-reflected vortex pair

(fig. 3(a)) is considered, the potential at an arbitrary point P is

given by

@p - £ P _ ]"+ - (9)

If the vortex forms at an arbitrary point near the wall, the reflected

vortex is at first, very close; _a is therefore small. As the vortex

flows away, _ becomes larger and attains finally we (fig. 3(b)).

For the rearmost point $2, _a - O, _e = _"

Thus,

8t 2_ 8t

and

_tl - _0 £ _tl - _D

tI 2_ tI

for a long time tI.

The entire _-variation for a vortex being shed is, for the rearmost

point,



5

_r : £ (lO)
2

During the long time tl, this process occurs n × tI times and since,

as is easily seen, the negative vortices yield the same energy variation,

the following relation is obtained:

_e F ntl= 2 =-nP (ii)
2 tI

nF

whereas the variation of the stagnation temperature is equal to - _p.

It is rather remarkable that the position of the point P plays an

important role insofar as points Pi' which lie between the vortex paths

(under the assumption that 0_a = 0), yield in the entire wake the same

value Ae as has just been calculated, whereas points Pa outside of

this region yield zero. Thus there would be an energy decrease in the

wake region, though none outside of it (fig. 4).

Doubtlessly, this picture is somewhat too simple. It is true that

every rotation starts from the boundary layer, thus from the cylinder

surface; for every elementary vortex, _a would, therefore, be zero.

However, the shedding off is not always at the same point and this exerts

probably an effect as though the full circulation of the collected vortex

would be present only at some distance from the cylinder. Once this

assumption is made, the determination of the energy takes a more com-

plicated course (fig. 5) 3 • Here the assumption is that the vortices

have formed at _ = ii0 °, at a distance 1.3R, and that they move recti-

linearly rearward. (The law of motion itself does not matter.) Some-

thing of the cooling then "slips" through toward the front and even at

the foremost point another slight drop would have to be expected. Besides

the dead region, however, there is now a small heating particularly near

the cylinder and near the vortex path.

It is interesting to see that the observations of Ryan show a quite

similar behavior, although they can hardly be very reliable in this area.

Figure Ry 25 shows temperature measurements in the wake where the thermo-

element was corrected according to special measurements. The upper curve

(corrected) shows low temperatures in the wake; in addition, however, it

shows temperatures higher than the stagnation temperature - that is, the

effect to be expected according to the calculation.

The temperatures on the cylinder surface can be seen from figure 6.

Of course, these are at first the ideal temperatures, so that another

3According to a calculation for which I am indebted to Dipl. Eng. L.

Meyer.



correction is required which takes the recovery in the boundary layer
into consideration.

Figure 6 (top) indicates the energy distribution for the nonsteady
potential flow. The dashed straight lines correspond to a shedding of
the vortices directly from the surface, the solid curve corresponds to
the temperature distribution for the case where the vortices form at
somedistance away. The recovery in the boundary layer is plotted in
figure 6 (center). It would be rather difficult to calculate it exactly
since a locally accelerated and, moreover, nonsteady flow is concerned.
Procedure, by way of approximation, was as follows: The recovery

2
was determined with _ = 0.83, with the velocities _ calculated

2Cp
from the practically steady measuredpressure distribution, on the front
side. On the rear side (_ > ll0°), the velocity _ was put equal to
zero for this calculation. As can be seen from appendix 2, these veloc-
ities are small; in the neighborhood of the rearmost point they are,
moreover, periodic so that neglecting them i_ intuitively suggested.

It must first be remarked that during the test (fig. 6, bottom) the
vortex field was treated as incompressible. For this reason, only meas-
urements at moderate Machnumbers (M = 0.35) maybe used. For the
decisive product nf a value

U2
nr = 1.17_

is chosen in such a manner that the temperature of the rearmost point
(_ = 180°) turns out according to the measurements, since a direct deter-
mination of P does not seempossible in practice.

It can be seen that the variation of the curves is quite satisfactory,
and it must merely be determined whether the selected nP contradicts
other experiments.

Ryan's measurementshave been madeat Reynolds numbersof the order
of magnitude i00,000, whereasmost vortex observations pertain to much
smaller Reynolds numbers. For the K_rm_nstzeet, at somedistance from
the cylinder, it was found4 that:

n = 0.202 U
2xR

F = 3.4 x U x R (according to K_rmgn's theory of the vortex street)

nx r : 0.69 _

4Handbuchder Experimentalphysik IV i, (Leipzig), 1931, pp. 164-165
(Falkenhagen-Schmiedel).
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It is seen that a product rut larger by 70 percent is needed. It

must be remarked that, with the finite velocity at the rearmost point

taken into consideration_ nF may be somewhat smaller than had been

assumed in figure 6. But it is not known whether P is considerably

larger in the neighborhood of the cylinder than at some distance, since

the convergence of positive and negative circulations is to be expected,
5

anyway 3 where F then would be smaller further to the rear. Since the

maximum steady velocity before the separation is approximately I.SUj

the circulation leaving per second (corresponding to nF) could be at

c2 U 2"
most max _ 2.25 7' this is about twice as much as is required for2
explaining the cooling effect. The required nP can then be regarded

as lying within the range of possibility.

It is noteworthy that at the point _ = 0, another small drop should

also be present. The measurements actually lie below the stagnation

value.

Thus it is seen that an explanation can be obtained for the cooling

on the basis of a nonsteady potential flow. It is possible to calculate

other cases as well and to predict heat effects so that perhaps further

experimental checks can be carried out. (See appendix 5.) Probably

there exists also a connection with the more recent experiments by
6

H. Sprenger.

Translated by Mary L. Mahler

National Aeronautics and Space Administration

5Heisenberg, Werner: Physikalische Zeitschrift, Jg. 23._ 1922,

pp. 363-366, with appendix by L. Prandtl.

6
Sprenger, H.: 0ber thermische Effekte in Resonanzrohren. (Mitt.

No. 21 (refer to footnote on p. i of this translation).)
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AP_ENp. _X

DERIVATION OF EQUATION 9

The equations of motion of two-dlmensional frlctionless compressible

gas flows are

au 8u au 1P _7+U_x+V_ =-ax

p +U_x+V _ =-_

If there exists, moreover, a potential _, it follows that

_v _u

ax ay

Substituting this equation gives

_U

"Sv

3t

Multiplication by dx and

}

dy, respectively, and addition yields

p_Udx+_Td +pd 2/2 =-dp (la)

The first term may be written, with introdu(_tion of

Thus,

_, as

+ d c212 =-_
8t P

(13)



_R

The isentropic relationship gives ith 7 -- _v

dp _ 7 dT

p 7 -IT

and

_P 7

P 7 -1
R dT = % dT

Thus there follows:

c2
and with e =cpT +-_-, finally

e + _ = Constant = e
bt

This equation is valid also for spatial potential flows.
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APPENDIX 2

CAI_UIATION OF THE VELOCITY AT THE POINT @ = 180 °

Vortex and reflected vortex yield, at the point z of the periphery

of the circle (fig. 7), the complex potential

If aI = _R, since

X = IF {ln(z - al) - ln(z -a2)}2_

ala 2 = R 2,

(14)

R
a2 =

Furthermore,

z = Re i_

The complex velocity is

dx_ iF al - a2 = iF__

dz _ (z- al)(Z- a2)_R

1

(ei_ - a)(e i_ - i/_)

(15)

0nly the magnitude of the velocity is imports_t:

After some calculation, it is found to be

2

2 + i - 2a co_
(16)

The effect of two displaced vortex serie_ must now be considered.

Since it is of interest to examine whether or not the velocity at the

point _ = 180 ° essentially contributes to the change in temperature,

it suffices to choose a schematic vortex arraJ_ement (fig. 7, bottom)
wherein

2
= 1 + (i + n_o)2-

l+ mid
COS _ =



ii

Thus for the upper row,

GO

m=O

is obtained, and for the lower row, shifted by half a partition

mVO
+

_(_ + 1) )1 + 2(_ + 1)2
2

The resultant velocity (positive upward) is

R + _2m2
m--=O 1 + _2(-2m2+ i

(17)

Since _ is rather large (for a K_m_n series, _ is approximately 8),

the expression under the summation sign can be simplified. Found approxi-

i1+ _ m(2m + l)
m=l

= 8, the value -0.32. Since in the

mately is the following equation:

r/_R = _ i + 2/4

The calculation yields, for

calculation

(18)

U 2
nP= 1.17 -_-

n = 0.2 u---
22

was taken, there results as the velocity magnitude at the rearmost point

for the given vortex position

c = 0.50U

It must be considered that c is periodic with the mean value of zero.

Therefore, for c2, for instance,

U2-g
c_ = O.lO 7

The related temperature drop due to incomplete recovery is to be regarded

as a small fraction of the nonsteady contribution.



12

APPENDIX 3

TEMPERATURE EFFECTS ON THE APPROACH OF A

PAIR OF VORTICES TOWARD A WALL

A simple example of a nonsteady motion which can be carried out in

all details is a pair of vortices moving toward a plane wall. The incom-

pressible flow was calculated by Grb_li 7 a lozg time ago (fig. 8).

If a and b are the coordinates of a free vortex, there follows

for the velocity of the vortex cores:

da F I_ b } F a 2-r-X

db F b 2

dt 4_r2 a

(20)

Hence,

The solution is

r=a_b
S

With r = 2s there follows:
min

The potential at the point

da a3
- (2l)

db b3

2sor r -
sin 2Ei

rmin
r - (22)

sin 28

0 is given by

= r_._4e -. e (23)_0 2=

The energy at the point 0 is

7Grobli, W.: Die Bewegung paralleler geradliniger Wirbelf_den.

(Z_rich), 1877.
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E0 = e
2r

- £
_t _ _ 3t

since 0 = arc tan b/a,

_t i I db da} Pr2 a _ - b _ = 4_r2

Thus,

60 = 6oo +
2_2r 2

Since a stagnation point lies at the zero point, there is also

(24)

F2
TO = T + (24a)

2_2r2Cp

At a somewhat larger distance the vortex velocity is

Thus, there is obtained

w2 2
- 8 s (25)

TO - T = AT Cp r--_

For the maximum case

w_ 2

ATma x = 2 Cp (25a)

For an approach velocity of, for instance, i00 m/see, a maximum tempera-

ture rise of approximately 20 ° would thus occur.
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Figure I.- Flow without separation about _ cylindrical body.

Figure 2. - Regulated flow directly at the cylin,ler. During the test
the cylinder was flexiblymounted in the trarsverse direction with
small amplitude.
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Figure 3. - Variation of potential in the flowing away of a vortex.
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Figure 4. - Different behavior at characteristic points inside and
outside the wake.
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0
I

Figure 5. - Temperature changes in the flow fi_Id stemming from the

periodic departure of n pairs of vortices ],er second, with a

circulation of .+F. (Solid curves: cooling; dashed curves: heating.)
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Figure 7. - Concerning calculation of the ve13cities at the cylinder.
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Figure 8. - Path of a pair of vortices (two-dim,_._nsional problem) in

the neighborhood of a plane wall; ps/rs of vertices and reflected
vortices.
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